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Abstract Based on the theory of sustentation degree of Triple I method together with the formulas of a-Triple I
modus ponens (MP) and a-Triple I modus tollens(MT) , the theory of restriction degree of Triple I method is proposed.
Tts properties are analyzed, and the general formulas of supremum of a-Triple I MP and infimum of a-Triple I MT are
obtained .
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Based on Refs. [1—4], the generalized form of optimization problem for the theory of sustenta-
tion degree of Triple I method is proposed in Ref. [5], which is as follows.

For any a € [0,1] with known A€ F(X),BEF(Y) and A €F(X) (or B* €EF(Y)), we
seek for the optimal B* €F(Y) (or A* €F(X)) satisfying

(A(x) > B(y)) > (A" (x) > B (y)) = a

for any x€ X and y€ Y, where F(X) and F(Y) represent the families consisting of all fuzzy sub-
sets of X and Y respectively.

However, when the fuzzy reasoning is applied to fuzzy control system, we have to investigate the
inverse problem, i.e. to seek the optimal B* € F(Y) (or A* €F(X)) such that

(A(x) > B(y)) > (4" (2) > B"(y)) < a. (1)

In this paper, the above inverse problem is discussed by using the implication operator R, given
in Ref. [5]. The theory of restriction degree of Triple I method is proposed, and the computation for-
mulas for supremum of a-Triple I MP and infimum of a-Triple I MT are given. The theory of a-Triple
I method is further developed. In addition, this work provides a necessary theoretical foundation for
realizing some performance index of a new type of fuzzy controllers.

1 Theory of restriction degree

For convenience, if the symbols of this paper are not explained specially, their meanings

* Project supported by the National Natural Science Foundation of China ( Grant No. 69934010) .
* * Corresponding author.



112
;

-

No. 1 SONG et al. : THEORY OF RESTRICTION DEGREE OF TRIPLE I METHOD 59

are the same as in Ref. [5]. Some definitions are as follows.

(i) FMP (fuzzy modus ponens) . Suppose that X and Y are nonempty sets, A,A" €F(X), B
€F(Y), then the fuzzy set B* € F(Y) satisfying (1) is called an a-solution of (1) for Triple I
FMP.

(ii) FMT (fuzzy modus tollens) . Suppose that X and Y are nonempty sets, A € F(X), B,
B" €F(Y), then the fuzzy set A* € F(X) satisfying (1) is called an a-solution of (1) for Triple
I FMT.

(iii) Restriction degree. Suppose that Z is a nonempty set, « € [0,1],C, DEF(Z). If
sup{ C(z) > D(z) | 2z € Z} = a, then the restriction degree of C relative to D is said to be a,
and is denoted by rest(C, D) = a.

Obviously, (1) holds if and only if the restriction degree of A— B relative to A" —B " is less
than or equal to . When the implication operator R, is adopted, then for « € (0, 1), rest(C, D)
< a ifand only if C(z) > D(z),C (z)<a and D(z) < a whenever z& Z,where C'(z)=1-C
(z). The general properties of the restriction degree are as follows.

Theorem 1. Suppose that rest(A, B) = a < 1,rest (B, C) =<1, then rest(4, C) <
aANBand a + =1.

Proof. By the hypothesis that rest(A, B) = a <1, it is known that
A(z) > B(z). (2)
From Ry(A(z), B(z))=A"(z)V B(z)<a, we get
A (z) < e and B(2) < a (3)
whenever zE€ Z. In a similar way, from rest(B, C) = 8 <1, we know
B(z) > C(z), (4)
and from Ry(B(z), C(z)) =B (z)V C(z) <, we have
B'(z) < Band C(z) < B (5)
whenever zE€ Z. Using (2) and (4), we have A(z) > B(z) > C(z), so that
R(A(z), C(2)) = A'(2) V C(2). (6)

Furthermore, from A’ (z) < B'(z) < C'(z) and (3),we have A’ (z) <a A B, and using (3)—
(5), it follows that C(z) < a A 8. Consequently, by (6) again, we obtain

Ry(4(z), C(2)) sa A P

whenever zE& Z . Hence
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rest(A, C) = suplRy(A(z), C(z)) 1z € Z| < a A B.

And noting that B’ (z) < and B(z) < a, it follows that « + f=1. Q.E.D.
Suppose that A, B, A; and B,;€ "(Z)(i€ I), then the following expressions are valid:

(i) rest( é\zAi’ B) = \E/Irest(A,-, B),
(ii) rest( A, \e/zBi) = 7\€/lrest(A, B,).

Suppose that A, B and C& (Z), then

(iii) rest(A, B—>C) =rest(B, A—~C),

(iv) rest (A, B—=C) =rest(A, C'—>B").

Suppose that A, B, C, B;and C,€1(Z), (i€ I), then

(v) rest (A, /G\B,-*’C) = \E/rest(A, B—C),
el 1SN

(vi) rest (A, B—>\€/Ci) = \/rest(A, B—’C,-).
2 Supremum (infimum) of &-Triple I FMP (FMT) for R,

Concerning the theory of restriction degree, when A€ "(X), BE€ i (Y) and A" € 1'(X) (or
B €1/(Y)) are known, there may be no solution B* (or A ) satisfying (1), so there may be no

optimal solution.

Example 1. Suppose X = Y = [0, 1], A{x)=0.7, B(y)=0.6, A" (x)=0.1 (or B”
(y)=0.9), then for any « € (0, 1) there will not exist B* € % (Y) (or A” € 1'( X)) satisfying

(1). In fact, by the definition of implication operator Ry, we know
Ry(A, B) =0.3V 0.6 = 0.6.

For known A* (x)=0.1 and any B €1'(Y), we have Ry(A*, B*)=(A") =0.9>0.6, so
that Ry(A, B)>Ry (A", B")=1>a, i.e. (1) does not hold. For known B* (y)=0.9 and
any A" €1(X), wehave Ry(A™, B )= B" =0.9. In a similar way, we know that (1) does not
hold. However there exists a solution of (1) in a certain condition. Now, we give the following re-

sults .

Theorem 2 (supremum of a-Triple I FMP for R,). Suppose that X, Y are nonempty
sets, A, A€ 1 (X), BE€i(Y), 0<a<1, then there exists the a-solution of (1) for Triple I
FMP with total inference rules if and only if there exists x,& X such that 4™ (%) >0 and

(A" (x)) < Ry(A(x), B(y)), A" (x) N Ry(A(x), B(y)) = o (7)

whenever x € X amd y € Y. On this condition, the supremum of a-solution of (1) for Triple I FMP
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is determined by
B*(y) = ng[A*(x) A Ry(A(x), B(y))] ANa,yE Y. (8)

Proof (necessity). Suppose that C(y) is an a-solution of (1) for Triple I FMP with total in-

ference rules, i.e.
(A(x) > B(y)) > (A" (2) > C(y)) < @ (9)

whenever x € X and y € Y. By the definition of R;, there exists x,€ X such that 4~ (x,) > 0.
Otherwise, A (x) =0 implies that Ry(A " (x), B(y))=1. This contradicts (9). From (9), we
can also get

A" (x) > C(y) and Ro(A(x), B(y)) > Ry(A"(x), C(y)) = (4" (%)) V C(y).

(10)
Consequently, (A" (x))" < Ry(A(x), B(y)). Furthermore, we have
(A(x) > B(y)) ~ (A" (x) > C(y))
= Ro(A(x), B(y)) V (4" (x)) V C(y)
= (47 (x) N Ry(A(x), B(y)) V C(y) < a. (11)

Combining (10) and (11), we obtain (7).

Proof (sufficiency). From the proof of necessity of this theorem, it can be seen that by taking
C(y) =0 and from the hypothesis in (7), we know that C(y) is an a-solution of (1) for Triple I

FMP with total inference rules.

Now we prove that B () determined by (8) is the supremum of a-solution of (1) for Triple I
FMP with total inference rules. In fact, for any C(y)€& "(¥) and C(y) < B*(y), we have

C(y) < A" (x), C(y) < Ry(A(x), B(y))and C(y) < a (12)

whenever x € X and y€ Y. So that Ry(A™ (x), C(y))=(A"(x))" V C(y). By the hypothesis

in (7) again, and similar to the proof of (11), we can also get
(A(x) = B(y)) > (A" (x) > C(y)) < a.

i.e. C(y) is an a-solution of (1) for Triple I FMP with total inference rules.

In the following, we prove that for any D(y) € i'(Y) with D(yy) > B™ (y,) where y,€ Y,
D(y) is not the a-solution of (1) for Triple I FMP with total inference rules. In fact, by D(y,) >
B” (y,) and the sense of B* (y) determined by (8), there exists x,€ X such that
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D(yy) > A" (x9) N Ry(A(xg), B(yy) A a. (13)
Now let us verify
R()(A(xo)’ B(fyo))’_’ Ro(A*(x())’ D(fyo)) > «a (14)

in different cases.

(I) If A* (%) < D(yg), then by the definition of Ry,we know Ro(A ™ (x9), D(y)) =1;
therefore (14) holds.

(1) If A” (x9) > D(y,), then
Ro(A(xg), B(yg)) = Re(A™ (x4), D(yo))
= Ry(A(x0), B(yg)) = (A" (%)) V D(y,). (15)
Furthermore, we will discuss two cases.
(i) If Ro(A(x0), B(y,))<D(y,), by the definition of Ry, (14) holds.

(ii) If Ry(A(x9), B(y)) > D(yo), and noting that A™ (xo) > D(y,), from (13) it can
be deduced that @ < D(y,). By the hypothesis in (7) again, we have (A" (x9)) < Ro(A (%),
B(yo)). So

Ro(A(x0)s B(yg)) > (A" (x0)) V D(yg).
Furthermore we have
Ro(A(xy), B(yo)) = Ry(A™ (x5), D(yy))
= R (A(xg), B(yo)) V (A" (x0)) V D(y0) > a.
All of these show that (14) holds. Q.E.D.

Under the hypothesis and condition of Theorem 2, for any y € Y, if x is confined to X, = { x€

Xlk‘ig{([A*(x)/\Ro(A(x), B(y))] <A* (x) N Ry,(A(x), B(y))}, then B* (y) deter-

mined by (8) is an a-solution of (1) for Triple I FMP with total inference rules, it is also the a-max-
imum solution of (1) for Triple [ FMP. If y€ Y, x is confined to X — X, then B” (y) determined
by (8) may not be the a-soloution of (1) for Triple I FMP, in this case, there may not exist a-maxi-

mum solution of (1) for Triple I FMP. Furthermore, we give the following discrimination criterion.

Under the hypothesis and condition of Theorem 2, there exists the a-maximum solution of (1)
for Triple 1 FMP with total inference rules if and only if

A" (x) N Ry(A(x), B(y)) > a whenever x ¢ X,.
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On this condition, B (y) determined by (8) is the a-maximum solution of (1) for Triple I FMP.

Theorem 3 (infimum of «-Triple I FMT for R,). Suppose that X, Y are nonempty sets,
ACl(X), B, B*€li(Y),0< a <1, then there exists a-solution of (1) for Triple I FMt with to-
tal inference rules if and only if there exists y,& X such that B (y,) <1 and

B"(y) < Ro(A(x), B(y)), B"(y) V Ro(A(x), B(y)) <e (16)

whenever x€ X and y€ Y. On this conditon, the infimum of a-solution of (1) for Triple I FMT is de-

termined by
A (x) = Sygg[B*(y) V Ro(A(x), B(y))]I V o', =x€ X. (17)

Proof (necessity). Suppose that C(x) is an a-solution of (1) for Triple I FMT with total in-

ference rules, i.e.
(A(x) > B(y)) > (C(x) > B"(y)) < a (18)

whenever x € X and y € Y. By the definition of R, there exists yo & Y such that B™ (y,) < 1.
Otherwise from B* (y) =1, it follows that Ry(C(x), B* (y))=1. This contradicts (18). From
(18), we have

C(x) > B"(y) and Ry(A(x), B(y)) > Ry(C(x), B*(y)) = C'(x) V B*(y).
(19)

Furthermore, we get

(A(x) > B(y)) = (C(x) > B" (y))
(20)
=R (A(x), B(y))V C(x)V B*(y) < «a.

Combining (19) and (20), we know that (16) holds.

Proof (sufficiency). From the proof of necessity, taking C(x) =1, from the hypothesis in
(16), it is easy to know that C(x) is an a-solution of (1) for Triple I FMT with total inference

rules.

Now we verify that A (x) determined by (17) is the infimum of a-solution of (1) for Triple I
FMT with total inference rules. In fact, for any C(x) € I"'( X) with C(x) > A" (x) where s€ X,

we have
C(y) > B*(y), C(y) > Ry (A(x), B(y)), C(x) > o (21)

whenever x€ X, yE€ Y. So Ry(C(x), B*(y))=C"(x)V B” (y). By the hypothesis in (16),
we get Ry(A(x), B(y))> C' (x)V B (y). Furthermore, we have
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(A(x) > B(y)) > (C(x) > B" (y))
=R (A(x), B(y)) V C(x) V B*"(y) < a,

i.e. C(x) is an a-solution of (1) for Triple I FMP with total inference rules. In the following, we
show that for any D(x) € #(X) with D(xy) < A™ (%) where x,€ X, D(x) is not the a-solution
of (1) for Triple I FMT with total inference rules. In fact, from D(x,) < A™ (%,) and the sense of
A" (x) determined by (17), there exists y,€ Y such that

D(xo) < B*()’o) V R’O(A(xo)) B()’o)) V oa'. (22)
In the following, we will verify
Ro(A(xo), B(}’o))—’ Ro(D(xo)y B*(}’o)) > a (23)

in different cases:

(I) If D(xo) < B” (y,), by the definition of R,, we know Ry(D(xy), B* (y,)) =1,
hence (23) holds.

(I1) If D(x¢) > B* (yy), Ry(D(xy)s B*(59)) =D (2¢)V B ().

we will discuss two cases.
(i) If Ry(A(xy), B(yy)) <D (xy), by the definition of Ry, (23) holds.

(i) If Ry(A(xy), B(yp)) > D' (x,), thatis, R'g(A(xy), B(y,)) < D(x,), from B*
(y0) < D(xg) and (22), it follows that @' > D(x,). Hence D' (x4) > a. By the hypothesis in
(16) again, we know B™ (y,) < Ry(A(xy, B(yy)). So

Ry(A(xy), B(yy)) > D'(x5) V B* (). (24)

Furthermore, we have

Ro(A(xo)9 B(}’o))_> Ro(D(xo), B*(}’o))

=R'0(A(xo), B(}’o)) V D’(xo) V B*(}’o) > a.

All of these show that (23) holds. Q.E.D.

On the hypothesis and condition of Theorem 3, for any x € X, if y is confined to ¥, = { y€vY

Isup[ B™ (y)V R'o(A(2), B(y))] > B* (y)V Ro(A(x), B(y))}, then A* (x) deter-
mined by (17) is an a- solution of (1) for Triple I FMT with total inference rules, and it is also the
a-minimum solution of (1) for Triple [ FMT. If x € X, y is confined to ¥ — Y;,then A (x) deter-
mined by (17) may not be the a-solution of (1) for Triple I FMT. In this case, there may not exist
the @-minimum solution of (1) for Triple I FMT. And we obtain the following discriminate criterion .
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As the hypothesis and condition of Theorem 3, there exists the a-minimum solution of (1) for

Triple I FMT with total inference rules if and only if
B*(y) V Ro(A(x), B(y)) < o' whenever y ¢ Y.

In this condition, A (x) determined by (17) is the a-minimum solution of (1) for Triple I FMT.

Finally, we consider the following form of generalized problem of the theory of restriction degree

of Triple I method with total inference rules, i.e. to seek the optimal B (or A ™) such that
(A(x) > B(y)) > (A" (x) > B"(y)) < a. (25)
Then we have following theorems.

Theorem 4 (supremum of a-Triple I FMT for R,). Suppose that X, Y are nonempty
sets, A" €I(X), BEK(Y), 0< a<1,then there exists a-solution of (25) for Triple I FMP with
total inference rules if and only if threre exists x,& X such that A” (x,) >0 and

(A" (%)) < Ry(A(x), B(y)), A" (x) N Ry(A(%x), B(y)) > o (26)

whenever x € X and y € Y. On this condition, the supremum of a-solution of (25) for Triple I FMP
is determined by

B*(y) = xigﬁ[A*(x) A Ry(A(x), B{y))] A a, y € Y. (27)

And for any y€ Y, if € X,, B" (y) determined by (27) is the a-maximum solution of (25) for
Triple 1 FMP. If y€ Y, x ¢ X, then B” () determined by (27) is not the a-solution of (25) for
Triple I FMP. In this case, there will not exist the a-maximum solution of (25) for Triple 1 FMP.

Theorem 5 (infimum of &-Triple I FMT for R,). Suppose that X, Y are nonempty sets,
A€(X), B, B"€ +(Y), 0< a<1, then there exists the a-solution of (25) for Triple I FMT
with total inference rules if and only if there exists y,& X such that B* (y,) < 1 and

B*(y) < Ry(A(x), B(y)), B*(y) V R'o(A(x), B(y)) < a (28)

whenever x € X and y € Y. On this condition, the infimum of a-solution of (25) for Triple I FMT is
determined by

A" (x) = ?29[3*(” V Ro(A(x), B{y)]V o', =€ X. (29)

And for any x€ X, if y€ Yy, A" (x) determined by (29) is the a-minimum solution of (25) for
Triple [ FMT. If x€ X, y ¢ Y,, then A” (x) determined by (29) is not the a-solution of (25) for
Triple I FMT. In this case, there will not exist the a-minimum solution of (25) for Triple 1 FMT.
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